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Some Remarks on Dirac's Equation in the 
Tolman-Bondi Geometry 
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The Tohnan-Bondi model is studied and integrated via the Newman-Penrose 
formalism. The results are used to discuss the Dirac equation. It is shown that 
there exist time regions during which the cosmological background can be consid- 
ered fixed and the Dirac equation separated and reduced in a standard way to a 
one-dimensional wave equation. 

1. I N T R O D U C T I O N  

The Tolman-Bondi  model (Tolman, 1934; Bondi, 1947) represents a 
spherically symmetric solution of the Einstein equation for a universe filled 
with dustlike matter. The interest of  this model lies in the fact that the 
equations of  motion, which are exactly integrable, contain solutions which 
represent an indefinitely expanding universe or a collapsing universe both 
starting with a big bang (Demianski and Lasota, 1973). 

The model has been reconsidered, in an elementary way, in Zecca 
(1991), by adding a cosmological constant term to the Einstein equations. 
The solutions resulting from this assumption have been found to be essen- 
tially the same of those of  the standard case with the adjoint of  a harmonic 
potential to the Kepler-like equation to which the motion can be reduced. 
However, the presence of the cosmological term leads to incongruities con- 
cerning the propagation of  light near the collapsing time. 

It  is the object of  this paper  to investigate the Dirac equation in the 
Tolman-Bondi  model, which, by the previous consideration, will be consid- 
ered without the cosmological term. 
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The problem is formulated by translating the Dirac equation in Min- 
kowski space into the Dirac equation in the Tolman-Bondi curved space- 
time via the spinor calculus of the associated Newman-Penrose formalism 
(Newman and Penrose, 1962). This study requires the preliminary calcula- 
tion of the spin coefficients and the solution of the corresponding Einstein 
equation. The so-established Dirac equation has a complex structure owing 
to the explicit time dependence of the spin coefficients and of the directional 
derivatives. In a physical situation, namely in the case of the collapsing 
universe but for time values near half of the collapsing time of the cosmolog- 
ical background and large on a microscopic scale it is shown that the complex 
time dependence of the Dirac equation disappears and it can be reduced in 
a well-known standard way to a one-dimensional wave equation. 

2. THE TOLMAN-BOND! MODEL 

The model consists in a spherically symmetric space-time filled with 
freely falling dust matter in such a way that in a comoving coordinate system 
the proper time has the form 

dr 2 = dt 2 - e r &z  _ y2(d02  + sin 2 0 d~b 2) (1) 

with F = F(r, t) and Y= (r, t)> 0. The Einstein field equations are assumed 
to be 

R u v = _ 8 7 7 2 G ( T u v  - i g,, vTa)  = " 8 r c G S ,  v 

with T ~ , v = q U ,  Uv, U'=I ,  Ui=0, ivat. Explicitly 

(2) 

S,r = e r ~-, Soo = y2 
2 2 

77 
See  = Soo sin 2 0, S, - 

2 

(3) 

and S ~ = 0  if a vail, where 7/= r/(r, t) represents the density of the dust 
matter of negligible pressure. A direct solution of equations (2) together 
with some physical aspects of the model can be found in Demianski and 
Lasota (1973). Since the object here is to discuss the Dirac equation in the 
Tolman-Bondi geometry, an account of the solution of equations (2) in the 
Newman-Penrose formalism is given. For notations, definitions, and sign 
conventions, we refer to Chandrasekhar (1983). 
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The null-tetrad frame is assumed to be 

1 1 e } , ) = l i = ~  ( , e -r/2, 0, 0) 

ei~) = m'=  1 (1, - e  - ~ ' ,  0, o) 
,,/2 (4) 

i ; 1 
e(s) = m = ~ - ~  (0, 0, 1, i csc 0) 

i * i  i * 
e . )  = m = ( m )  

I t  satisfies the convenfiona] orthogonaiJty and normalization conditions 

l , m = i . m * = n . m = n . m * = O  

I . n = m - m * = l  (5) 

According to the definition given by Chandrasekhar (t983), the Ricci rota- 
tion coefficients, here called spin coefficients, given by 

I 
Y(.)(b)(c) = ~ [;t,(~)(b)(c) + ,?,(r -- X(b)(c)(.)] 

with 

X(,,)(b)(c) = e(b),.i = [e~)ei~) - e ~,)e~c)] 

are denoted by the following special symbols with values: 

K ' :  ) / 3 1 1 : 0  V = )/242 = 0 ,~ : )/244 : 0 

~" = )/312 = 0 ~ = )/241 = 0  0 - = ) / 3 1 3 = 0  

1 
p = )'314 , ~  Y ( t '+ Y'e -r/2~ 

1 
],1 = ~243 = ~ ( Y - -  r ' e  -r/2) ( 6 )  

]~ = --Gt = �89 ()/213 q- )/3,13) = c o t  0 
2./~Y 

t 
e = - ) / =  ~ ()/:Jl +)/341) 4 @  

(the dot and prime denote partial derivatives with respect to t and r, respec- 
tively). According to the Newman-Penrose formalism, the Einstein-Ricci 
equations corresponding to equations (2) and the Bianchi identities are 
then obtained in terms of  the spin coefficients (6), of the complex scalars 
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q%, q'l, q~2, ~F3, W4 specifying the Weyl tensor, of suitable expressions of the 
components of the Ricci tensor and of the directional derivatives D = li0i, 
A = niOi, t~ = , i o i ,  and 6" = m*iOi. 

In our case, by setting Rik=e~,.)e~k)R~B, the Ricci tensor is defined 
through the following scalars having values 

_ 1 qb00 -- -- ~ Rll = 2rcGr/ 

qbll = - -  41-(RI2 + R34)  = f f G r /  

(I)22 --- - �89 = 2rcGq 
1 

(I)o2 = - -  ~ R33 = 0 

( I )01 = - I R I 3 = 0  

R = R k k  = 8rcGq 

(I)21 = - � 8 9  ----- 0 

(I) t2 ---'-- / R23 = 0 

~ 2 o  = - �89 R44 = 0 

(1)10 = ---12 R I 4  = 0 

A= ~ R _  ZrGrl 
3 

(7) 

The Einstein-Ricci equations are tabulated in their general form in 
Chandrasekhar (1983). Twelve of them come out to be identities in Y or are 
trivially satisfied in our case, giving 

(8) 

The remaining nontrivial equations are 

Dp = 2ep + pZ + 2rcGq 

( D + A ) 7 =  - 4 7 e +  qJ2+2~rGr/ 

D/~ =p/ t  - 2/t e + u~2 +_~ trGr/ 

(6 + ~*)a =/.tp + 4a - W2 +47rGr/ 

A t / = - # 2 -  27/~ -2JrGo 

AR = -p/~ + 2 7 p -  W2- ~ 7rGr/ 

(9a) 

(9t3 

(9h) 

(91) 

(9n) 

(9q) 

By taking into account that D + A = x/~0,, and D -  A = x/~e-r/2G, by adding 
equations (9a) and (9q), subtracting equation (9n) from equation (9h), and 
then by summing and subtracting the two resulting equations, we get 

4~(p+~)=p~-p  ~ 

4~(P- ~) = ( p -  ~)~- 2w~ + ]~a~ 

(1o) 

(ll) 
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From (10) and the explicit values (6) of the spin coefficient there follows 
?, y,2 

la=2 - -  e r -  (12) 
Y" 1 +2E 

E= E(r) is an integration function. Equation (11) gives 

_ ? + 4  ~ 2 - y  ~ JrGr/ (13) 

With regard to the eight Bianchi identities, they are trivial or automatically 
satisfied except 

-Dq'2+3p~F2-27rGArl-~rGDrl+2~rGrl(p-p+47)=O (14b) 

- A W 2 - 3 p W 2 -  2rcGDtl-~JrGAtl+ 2rcGrl(p-p +4?')=O (14g) 

-2]rG( D + A) 7/= 4:rGrl(- p + # - 2?') (14i) 

With the spin coefficient values (6) and the result (12), equation (14i) implies 

0 
o-S (~Y2r')=0 (15) 

We choose the integration function so that 

;0 m'(r)=4rcGrlY2Y ' , re(r) =47rG rlY2Y' dr (16) 

By subtracting equation (14g) from equation (14b), using the definition of 
the directional derivatives.and the results (6) and (13), we obtain (PY)'= 
-m'(,') or 

] ) r=  -re(r)  (17) 

choice of the integration function. Hence, from (13) with a suitable 
and (17) 

re(r) ~-~JrGr7 (18) 
q~2=- y~3 

Finally, from equation (91), by taking into account that a + 8  *= 
( ,]2/Y) ~o and by using (18), one gets the well-known result 

~2 t;1 
. . . .  E (19) 
2 Y 

One can check that all the remaining equations are identities in Y when Y 
satisfies equation (19) and q~2 has the expression in (18). From the physical 
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point of view, equation (19) is interpreted as governing a Newtonian-like 
equation of isotropic gravitating dust matter. This leads to the interpretation 
of the conserved quantity in (t6) as the effective mass of a sphere of radius 
Y. Equation (19) can be explicitly integrated. The parametric form of the 
solution is given by (Demianski and Lasota, 1973) 

re(r) 
Y= G (cosh 17 - 1) (r/> 0) 

2E(r) 

m ( , ' )  
t - to(r)  = G i 2 E ( r ) ] 3 / 2  ( s i n h  17 - 77) 

(20) 

for E> 0, while 

m ( r )  
Y = G  (cos 77-1) (0< r/<2re) 

-2E(r) 

m ( r )  
t - to(r) : G [_2E(r)]3/2 ( r  I - sin 17) 

(21) 

for E< 0. If we take to(r) = 0, the case E > 0 represents an indefinitely expand- 
ing universe starting with a big bang at time t=0,  while the case E < 0  can 
be interpreted as representing an initially expanding universe starting with 
a big bang at time t = 0 and such that the dust matter at distance r has been 
collapsed at time t c ( r )=  2 7 c G m ( r ) / [ - 2 E ( r ) ]  3/2. 

3. S O M E  REMARKS O N  THE DIRAC E Q U A T I O N  

The Dirac equation in spinorial form can be expressed in the Newman- 
Penrose formalism by replacing the ordinary derivatives and Pauli matrices 
by the covariant derivatives and a generalization of the Pauli matrices 
expressed in terms of the components of the vectors of the tetrad frame 
(Chandrasekhar, 1983, Section 103). 

The equations so obtained can be written in explicit form in terms of 
the directional derivatives and the spin coefficients. In the Tolman-Bondi 
geometry they read 

( D + ~ - p ) F ,  + ( ~* - ct )F2 = il.t , G~ 

(A + l~ + ~)F2+ ( 6 - c t ) F j  =i l~ ,G2 
(22) 

( D  + e - p)G2 - (~  - a)G1 -- il 1 ,F2 

(A +/~ + e)G, - (~* - a)G2 = i l . t ,F, 
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/-t,v~ is the mass of  the particle, F, , / :2 ,  G,, and G2 are the four components 
of the wave function, which depends on r, 0, q~, and t, and the spin 
coefficients have the explicit form (6). 

The solution of  equations (22) in their complete form seems to be quite 
complicated since both the spin coefficients and the directional derivatives 
have an explicit time dependence, Y(r, t) being the solution of  equation (19). 
So we are led to look for physical situations or approximations in which 
equations (22) can be separated. From the symmetry of the metric (1) it is 
evident that (0q~) u is a Killing vector. The covariant form of the Killing 
equation for (Ot) u is Va(Ot)b + Vb(c~t)a = 0. In the comoving coordinate system 
that has been employed in equation (1) one has (&)~= (1, 0, 0, 0)-= (St)~. 
Furthermore, 

V.(Ot)v= v+ ~ ~ a~(~t) r . j o t )  = r . ,  

so that 

Ff, + F~, = 0 (23) 

Equation (23) is not a covariant equation, since it is not identically satisfied. 
Indeed the nonzero Fit can be directly obtained from the metric (1) to give 

0 /" 9'  F~t = F0~ = y ,  V~, = 2 y-5 (24) 

We notice, however, that the Dirac equation describes physical processes 
taking place in time intervals large on a microscopical scale but small on a 
macroscopic and hence on a cosmological scale. Since IV(r, �89 to)=0 in the 
case of equation (21), the cosmological background Y(r, t) can be considered 
fixed for time intervals It-~tcl<<tc, but large on a microscopic scale. In 
these intervals the Dirac equation can be solved by setting I>(r, t)-~0, 

1 Y(r, t) ~- Y(r, ~ to) =- Gm/E,  and hence by taking the spin coefficients and the 
tetrad frame vectors as independent of the time t. 

Under these assumptions (80 ~ and (Sq~) b can be considered as commut- 
ing Killing vectors and the standard dependence exp[i(crt + m~b)] on r and 
t of  the wave function together with the approximations 

e _ p ~ ( E  + �89 (2S) 
Y 

(E+ �89 
p - y - (26) 

Y 

can be assumed in solving equation (22). Then the Dirac equation (22) 
can be further simplified by applying the well-known method of separation 
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exposed by Chandrasekhar (1983, Chapter 10). From (4), (6), (12), and (26) 
and the definitions of the directional derivatives, equations (22) become 

Do(YFI)  + 2-1/2L1/2F2 = i l t ,  YGI 

D~( YF2) - 2- ' /2Lb2FI = - i t t .  YG2 
(27) 

Do(YG2) - 2 -1/2L-~/2GI = itt . YF2 

D~( YGI) + 2-1/2LI/2G2 = - i t t ,  YF, 

where we have set 

1 
Do = ~ (e-V/20r + icr), 

1 D~- = ~ (e-r/20r- io'), 

and the relation 

Do(YF)  = YDoF+ F ( E +  �89 

L,/2=Oo+m csc 0 +  �89 cot 0 

1 
L~/2 = Oo - m csc 0 + ~ cot 0 

(28) 

together with 

D~(YF) = YD~F+ F(E+ �89 

has been used. The r and 0 dependences can be separated in (27) by YF, = 
R-1/2(r)S-,/2(O), YF2=R,/2(r)S, /2(O),  YG,=R, /2(r )S- , /2 (O) ,  and YG2 = 
R-, /2(r)&/2(O) to obtain the Teukolsky-like equations 

YDoR- I /2 = (Z + i l l ,  Y)  RI /e 
(29) 

YD~ R1/2 = (X - it*, Y)  R -  i/2 

together with standard equations for Se:l/z which determine the value of the 
constant % (see, for instance, Chandrasekhar, 1983). 

By successively setting 

r*=x/~ (l + 2E)l /z  dr 

z 4 - i l I , Y = ( z 2 + p 2 ,  Y2)I/2 exp(+/tg - ' /1 .  Y) (30) 
Z / 

R, j2e,p[  itg 
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one gets, from equation (29), 

( ( E + I / 2 ) ' / 2 Z p * ) "  ()~2 -k ]./2, Y2) '/2 
d /2Ticr 1-t- - - z ~  / 'e:~/2= q%,/2 (31) 

Moreover, by setting 

/~, = r,  + tg-' ( /J-~)  (32) 

one gets from equation (31) that the functions qs:L~/2 satisfy the equations 

d d_=t= icrtuL+,/2 = W~:~,/2 
&~', / 

(33) 
W : - -  ~ ( X 2  -{-/d2 y2)3/2 

Y[(Z2 +/,2 Y2)~. +2'/.t,(1 +2E) '/21 

Taking further 

one obtains 

where 

dW 
V.= W2!  

d& 

Z:~ I /2 = ~Y111/2 z~z I~/_1 / 2 (34) 

(d2 ) 3~2 +ry 2 Z .  = V~Z~ 
di', 

(35) 

2(X2 _+_ ,//2 y2)3 

r2[~(x2+/,r2)+z~,(1 +eE) ' /2]  2 

2(x~ +.~, y~) :k 
y2[.f~(z2 +/t2 * y2) +Z/I . (  1 + 2E),/213 

• (Z2+l~zr2)'/2[.f2(Z2+l~2,Y2)+Zp,(1 +2E)'/2](2u2,Y2-x2 ) 

+ Y(z'z+It2*y2)3/2 2/t2" Y(1 +2E)' /24 (1 +2E) '/2 XP, (36) 

With regard to the case E>0,  even if the condition Y/Y=O is rapidly 
approximated for increasing t, Y can no longer be considered as time 
independent, since, from (20), Y~-t(2E) 1/2 for large t. 
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The study of  this last case as well as the case for times near the collapsing 
time when E < 0  would be of  interest to throw more light on the exact 
solution of  the Dirac equation (22). 
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